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LETTER TO THE EDITOR 

Stochastic resonance in deterministic chaotic systems 

A Crisantit, M Falcionit, G Paladin$ and A Vulpianit 
t Dipartimento di Fisica. Universiti ‘La Sapienza’, 1-00185 Rome. Italy 
t Dipartimento di Fisica. Univenita dell’Aquila. 1-67010 Coppito, L‘Aquila. Italy 

Received 8 lune 1994 

Abstract. We propose a mechanism which produces periodic variarions of the degree of 
prediaability in dynamical systems. It is shown that even in the absence of noise when the 
control parameter changes periodically in time, below and above the m o l d  for the onset of 
chaos, stochastic resonance effects appear. As a result one has an alternation of chaotic and 
regular. i.e. predictable, evolutions in m dmst periodic way, so that the Lyapnnov exponent is 
positive but some time correlations do not d a y .  

The mechanism of stochastic resonance was initially introduced as a possible explanation of 
the long time climatic changes [ H I .  In the last few years it has been used in a wide class of 
systems in physics and biology such as analogue circuits [51, ring laser [61, neurology [7,8], 
bistable systems [9, IO], systems with coloured noise [I I], see [I21 for a recent review. 

The phenomenon can show up in bistable systems with a periodic forcing and a random 
perturbation. A typical example [ 1 4 ]  is the evolution generated by the stochastic differential 
equation 

where V is a time periodic double,well potential 

V ( x ,  t) = $x4 - i x z  + A X  cos(or) (2) 
and q represents the white noise. 

It can be shown [14] that there exists a range of values of A,  U and o where the jumps 
between the two oscillating wells are strongly synchronized, as a consequence of a sort of 
resonance between periodic forcing and random perturbation. 

Systems showing stochastic resonance are, in some sense, intermediate between regular 
and irregular ones. since they are described by a random process-the jumps do not follow a 
deterministic rulewhich, nevertheless, exhibits a certain degree of regulm’ty. For instance, 
the x-time correlation does not decay. 

This letter shows that a similar behaviour can arise in deterministic system close to the 
onset of chaos when the control parameter varies periodically in time. Under appropriate 
conditions, the time evolution shows an alternation of regular and chaotic motion strongly 
synchronized with the time variation of the control parameter. The presence of deterministic 
chaos plays the role of the random perturbation, so that it would be more correct to speak 
of ‘chaotic resonance’ rather then of stochastic resonance. Chaotic resonance seems to be 
present in natural phenomena, such as the time evolution of weather, which is governed by 
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a set of nonlinear equations which surely exhibits deterministic chaos. Nevertheless, one 
observes some elements of regularity such as high predictability during summer, at least 
in the temperate regions such as the mediterranean countries, and very poor predictability 
during winter. 

Although the alternation of seasons cannot be described by low-dimensional systems, 
some qualitative features can be captured by toy models, which can be useful as a first step 
towards comprehension of the mechanism producing periodic variations of predictability in 
short and long term climate phenomena. 

We have chosen to analyse the Lorenz model [I31 which is the first geophysical 
dynamical system where deterministic chaos has been observed. We consider the original 
differential equations 

- = I O ( y - x )  -=- dy x z + R ( t ) x - y  z= dx 
dr dt (3) 

where the control parameter has a periodic time variation 
R(t )  = Ro - A cos(Zrrt/T). (4) 

The Lorenz model describes the convection of a fluid heated from below between two layers 
whose temperature difference is proportional to the Rayleigh number R .  In our case, the 
periodic variations of R roughly mimic the seasonal changing of the solar heat input. 

In order to get stochastic resonance effects without noise, the average Rayleigh number 
Ro is assumed to be close to the threshold R ,  = 24.74 for the transition from stable fixed 
points to a chaotic attractor in the standard Lorenz model. The value of the amplitude A 
of the periodic forcing should be such that R ( t )  oscillates below and above R,. For very 
large T ,  a good approximation of the solution is given by 

x ( t )  = y ( t )  = +/= ~ ( t )  = R ( t )  - 1 (5 1 
which is obtained from the fixed points of the standard Lorenz model by replacing R by 
R ( t ) .  The stability of this solution is a rather complicated issue, which depends on the 
values of Ro. A, and T. For instance, when Ro = 23.3 and A = 4, we found numerically 
that the solution is stable for any value of T ,  although R ( t )  can become larger than R,. 

On the other hand, it is natural to expect that if RO is larger than Rcr the solution is 
unstable. In this case, for A large enough (at least RO - A < R,) one observes a mechanism 
similar to that of the stochastic resonance in bistable systems with random forcing. As in the 
case of the stochastic resonance we have a periodic variation in the dynamics (the control 
parameter) and the chaos plays the role of the noise. The value of T is crucial: for large T 
the systems behaves as follows. It is convenient to call 

(6) 
the times at which R(f)  = Rcr. For 0 < f < TI, the control parameter R ( t )  is smaller 
than Rm so that the system is stable and the trajectory is close to one of the two solutions 
(5). For TI e t < Tz, one has R ( t )  > R, and both solutions (5) are unstable so that 
in a short time the trajectory relaxes towards a sort of ‘adiabatic’ chaotic attractor. The 
chaotic attractor smoothly changes at varying R above the threshold R,, but if T is large 
enough, this dependence can be neglected in a first approximation. However, when R ( t )  
again becomes smaller than Rcr, the ’adiabatic’ attractor disappears and, in general. the 
system is far from the stable solutions (5).  But, since they are attracting, the system relaxes 
toward them. If the half-period fi  is much larger than the relaxation time tc, in general the 
system follows one of the two regular solutions (5) for Tb+l .= t < Tb+2. However, there 
is a small but non-zero probability that the system will not have enough time to relax to (5 )  

Tn C f n T  - i T  
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Figure 1. Model with A = 4, Rg = 25.5. L as a funcrion of t l T  for (0) T = 300 and 
(b) T = 16W. 

and that its evolution remains chaotic. Figure 1 shows the time evolution for (a) T = 300 
and (b) T = 1600. They provide unambiguous numerical evidence that the jumps from the 
chaotic to the regular behaviour (and the contrary) are well synchronized with R(t) ,  with 
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Figure Z Model with A = 4. Ro = 25.5. Probability density, p. to have an irregular interval 
z = AIIT. for T = 300. 

probability close to 1 when the forcing period T is very long, as in figure l(b). On the 
other hand, for small value of T the system often does not perform the transition from the 
chaotic to the regular behaviour, see figure l(a). 

In both cases, in fact, we found 
numerically that the first Lyapunov exponent is positive, although the correlation function 
of the variable z does not decay. This is due to the presence of strong correlation between 
the regular intervals. A similar phenomenon is present in the logistic map for certain values 
of the control parameter, when the motion takes place in a finite number of windows, and 
the behaviour is chaotic but the correlation function does not decay 1141. We note that, in 
our system, other variables, e.g. x or y. exhibit a fast decay of the correlation function. 
This is due to the fact that after the irregular intervals the system can relax, with equal 
probability, on one of the two solutions (5) .  

Figure 2 shows the probability distribution of the lengths of the irregular interval. 
One observes peaks around T / 2 ,  3T/2,  5 T / 2 . .  . , while the envelope of the probability 
distribution decreases exponentially. This feature can  be easily explained. 

At t = Ta (n = 1,Z.. .) the system will be in some part of the 'adiabatic' chaotic 
attractor. The phase space is divided into two regions Q1 and S2z such that if z(T2,) 
is contained in RI the trajectory during the following half-perid will be very close to 
one of the two solutions (5) .  On the other hand, the points z(Ta) contained in Rz 
generate trajectories which remain far from (5). Calling A the measure of the region R, 
and noting that in the irregular intervals the correlations decay very quickly, it  follows 
that the probability, P., that the lengths of the irregular interval is close to Tzn+l is 
P,, N 7 = exp(-cn) with c = -In F. 

It is worth stressing that the system is chaotic. 
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Figure 3. Model wilh A = 4. Ro = 25.5. Probability of jumping one or m e  regular intends, 
P. as a function of ule forcing period, T. 

This feature has been observed in many other systems exhibiting stochastic resonance 
[7,8,15-171. 

The probability of jumping a regular interval, r, decreases with the period of the forcing 
T ,  of course. Figure 3 shows that in the Lorenz model (3), the probability P ( T )  to have 
an irregular interval longer than T decreases as 

P ( T )  = lw p ( r )  d s  N e-‘ * (7) 

where p ( r )  is the probability disiribution of the length of the irregular interval. 
Withcut entering in the details, we briefly discuss the effect of a random forcing, of 

szength U ,  in the case where R ( t )  - R,, changes sign during the tune evolution but the 
solutions (5). in the absence of the noise, are stable. In practice, we consider the Langevin 
equation 

dx 
dt 
- = 10(y - x )  + &tl l  

where qi( t )  are uncorrelated white noises i.e. ( q i ( f ) q j ( t ’ ) )  = &j8(t - f’). 
The numerical study of the model (8) reveals a phenomenology very close to the original 

stochastic resonance r1-41. For small values of U one has the same qualitative behaviour 
obtained at U = 0, while for U slightly larger than a critical value ucc one has an alternation 
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of regular and irregular motions. Now the Lyapunov exponent, computed treating the 
noise as a usual time-dependent term, is negative, i.e. two trajectories, initially close, 
with the same realization of the random forcing do not separate but stick exponentially 
fast. We stress that the Lyapunov exponent computed in the above method is neither 
unique nor the most physically relevant characterization of the complexity of noisy systems 
1181. 

It is not difficult to give a rough argument for the above features. In the time interval 
where R ( t )  c R,, because of the random noise, the distance 6 between the state of the 
system x and the solutions (5) is O(&). During the half-period Tk+l c t c T.+2, the 
typical distance 6 grows exponentially 

Very roughly, c is related to the largest real part of the eigenvalues of the stability matrix 
computed along the solutions (5). Calling L the size of the 'adiabatic attractor', if the 
strength of the random forcing is large enough, i.e. 

a > uc, - L2e-'' (10) 

the system can jump into the 'adiabatic attractor' at a time between T.+l and T.+2 and 
one has the same behaviour shown in figure I@). 

This feature is quite similar to the original stochastic resonance, as the central role is 
played by the forcing term. Let us stress that the critical value ucr decreases very quickly 
with the period T. 

In conclusion, we have shown that the phenomenology of the stochastic resonance can 
appear in a dynamical system even in the absence of a random perturbation, when there is 
a periodic time variation of the control parameter around the onset of chaos. Instead of the 
two minima in the double well potential considered by the original stochastic resonance, 
one has two dynamical states of the system: chaotic and regular. The role of the noise is 
played by the chaotic evolution itself. It is worth noting that one needs that the period T 
of the control parameter variations should be much larger than the internal relaxation time 
tc toward the regular solution of the unperturbed system. 

Stochastic resonance in chaotic systems has relevant consequences for the predictability 
problem. It shows that the predictability time is not trivially related to the Lyapunov 
exponent if T is large enough. During the regular intervals, one has an almost perfect 
predictability while in the irregular intervals the Predictability time is given by the 
inverse of the Lyapunov exponent. Moreover, we have shown that there is a non- 
zero probability (vanishing when T + 03) to skip a regular interval. Using pictorial 
language, we could say that the regular interval corresponds to the summer evolution, 
while the irregular one to winter. Although the Lorenz model is too naive for any 
attempt at a realistic description, it allows us to reproduce some important features of 
weather forecasting which motivated our work the forecasting is limited up to a time 
proportional to the inverse Lyapunov exponent of the system during winter; there is 
a very high predictability in summer; there is a small but not negligible probability 
to have very bad summers (jumps of the regular intervals) where the weather is 
unpredictable. 

We are grateful to M Serva for many useful discussions. MF, GP and AV acknowledge the 
financial support of the I" through the Inkiativa specijica FI3. 
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